Carbon Nanotube AFM Probe Technology
نویسنده
چکیده
The invention of atomic force microscopy (AFM) is having a great impact on various areas, such as nano metrology, materials science, surface science and biology (Binnig et al., 1986). The lateral resolution of AFM is mainly determined by the probe’s shape and physical property, especially the geometry and dimension of the probe end. Conventional AFM probe is pyramidal shape by micro-fabrication. The pyramidal probe would result in image resolution degradation by severe probe broaden effect, especially for the structures with higher aspect ratio, such as gratings and structures in MEMS. To broaden the AFM applications, researchers pursue new kind probes that have longer lifetime, higher resolution, and better mechanical property. Carbon nanotubes (CNT) show many excellent properties, such as, high aspect ratio, high Young's modulus, excellent elastic buckling property, and electrical and thermal conductivity (Iijima, 1991). The above characteristics make carbon nanotube be ideal as probes in AFM. Carbon nanotubes have demonstrated considerable potential as AFM probes after the first CNT AFM probe was invented in 1996 (Dai et al., 1996). This chapter would introduce the history of carbon nanotube AFM probes, including the CNT probes’ farbication and configuration optimization, the CNT probes’ image artefact and its elimination study, the applications of these new kind probes and researches to improve their performance.
منابع مشابه
High-Yield Assembly of Individual Single-Walled Carbon Nanotube Tips for Scanning Probe Microscopies
The structural and mechanical properties of single-walled carbon nanotubes (SWNTs) make them ideal tips for scanning probe microscopies such as atomic force microscopy (AFM). However, the ideal nanotube probe, which corresponds to an individual SWNT, has been difficult to produce in high yield. To overcome this difficulty, a straightforward and easily implemented method that enables very high-y...
متن کاملComputational models of a nano probe tip for static behaviors.
It is difficult to predict the measurement bias arising from the compliance of the atomic force microscope (AFM) probe. The issue becomes particularly important in this situation where nanometer uncertainties are sought for measurements with dimensional probes composed of flexible carbon nanotubes mounted on AFM cantilevers. We have developed a finite element model for simulating the mechanical...
متن کاملIs Schitter on Single-molecule Dna Sequencing with Functionalized Carbon Nanotube Probes
A single molecule of DNA is denatured and immobilized on an atomically flat substrate, and a carbon nanotube force probe functionalized with a nucleotide is scanned along the molecule to detect locations of the probe nucleotide’s complement. Discussion is offered regarding the preparation of single-walled carbon nanotube AFM probes and their chemical attachment of DNA nucleotides. Additionally,...
متن کاملLength control and sharpening of atomic force microscope carbon nanotube tips assisted by an electron beam
We report on the precise positioning of a carbon nanotube on an atomic force microscope (AFM) tip. By using a nanomanipulator inside a scanning electron microscope, an individual nanotube was retrieved from a metal foil by the AFM tip. The electron beam allows us to control the nanotube length and to sharpen its end. The performance of these tips for AFM imaging is demonstrated by improved late...
متن کاملScanning Probe Techniques for Engineering Nanoelectronic Devices
microscopy-based techniques is enabling new ways to build and investigate nanoscale electronic devices. Here we review several advanced techniques to characterize and manipulate nanoelectronic devices using an atomic force microscope (AFM). Starting from a carbon nanotube (CNT) network device that is fabricated by conventional photolithography (micron-scale resolution) individual carbon nanotub...
متن کامل